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The rationale of the diastereoselectivity in the reactions of & gas phase @ @
alleged sterically unbiased molecules has been reviewed exten- oH
sively, but remains a controversial issu&n explanation of this .
phenomenon was brought forth by Ciepakho invoked hyper- MeOH cyclohexane

conjugative donation of electrons into the-orbital of the / \

incipient bond formed. Other authors criticized this appréach

because of its neglect of direct electrostatic interactfoisother 6 6

explanation is based on the distortion of the geometry of the

precursor that could induce a steric preference for the reagent’s

attack® Although various types of reactions with substituted OH OH OH OH
adamantanes have been studigittually nothing is known about 5 6 8

the behavior of the corresponding carbeh@he geometry of from the diazo compound must be inhibited, if only carbene
these highly reactive intermediates should closely resemble thereactions are to be studiéd.

OH OH
2 3

7

activated complexes of their reactich¥herefore, the investiga- The intramolecular 1,3 €H insertion products3 and 4
tion of carbene reactions should allow general conclusions about(Scheme 1) were formed quantitatively by vacuum pyrolysis in
the nature of the observed diastereoselectivity. a 90:10 ratio in favor of thanti insertion produc8 (Table 1)16.7

To this end, the intra- and intermolecular insertion reactions Diazirine 1 was photolyzet in cyclohexane to yield produc®
of 5-hydroxy-2-adamantyliden@)were studied in the gas phase and8. For the intermolecular €H insertion reaction, the ratio
and in solution2 appears to be an ideal system for the following was reversed to 89:11 in favor of tisgrnrsubstituted (Figure 1)
reasons. Direct steric interactions with the approaching reagentproduct?. The photolysis ol in methanol was carried out without
should be negligible, because the substituent at C-5 is locatedfumaronitrile (FN) and in the presence of at least a one 100-fold
practically opposite of the divalent carbon. Moreover, the rigidity excess of FN. In pure methanol, the-8 insertion occurs in
of the adamantane skeleton prohibits conformational changes thathigh yields with a ratio of 74:26 in favor of theynsubstituted
would influence the course of the reaction. product 5.° However, in the presence of FN, a potent 1,3-

Carben& was generated thermally and photochemically from dipolarophile, this ratio is increased to 85:15. The combined yield
2-azi-5-hydroxyadamantang® which was prepared from the of O—H insertion product® and6 dropped from 89 to 58%f,
corresponding keton¥.In general, carbenes can be generated by independent of the concentration of FN chosen. Since the diazo
photolysis of diazirines via two competing pathway3hey can compound is completely scavenged in a 0.5 M FN solution, the
be formed by the extrusion of nitrogen either directly from the higher ratio of5 to 6 (85:15) can be exclusively attributed to
excited state diazirine or indirectly from the linear diazo carbene insertions.
compound? Calculation$® and experimental resulfssuggest a In addition, an ab initio geometry optimization of the singlet
singlet ground state for adamantylidene. ground state o2 was performed* The calculated structure shows

In polar protic solvents such as methanol, however, the diazo a deviation of 7.4 away from the G-H group of the carbene
compound is readily protonated leading to the corresponding carbon from the H-C;—C;—Hj; plane. Even when choosing a
carbocatiort® This carbeniumion reacts with methanol to yield starting geometry with £bent toward the ©H substituent by
methyl ethers. The possible formation of an interfering carbocation about 20, the carbene carbon passes the-8;—Cz;—Hs plane
and settles in the described conformation.
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Table 1: Ratios of Diastereomeric Products Formed fram reactant seem very unlikely. The insertion of a carbene intéiC
d bonds is a concerted reaction of the singlet stafghis is in
product . . .
reaction conditions yiekPo  distributior? contrast to the polar mechanism-® insertion?> One would

expect a higher selectivity for the charged intermediate involved

pyrolysis 3 4 in the O-H insertion. The comparable diastereoselectivity
gas phase (neat) ~99 20 10 observed in the ©H (85:15) and C-H (89:11) insertion reactions
) strongly argues against direct electrostatic control of the reagent’s
photolysis orientation. Although a hyperconjugative stabilization of ttie
5 mM in cyclohexane 92 789 811 orbital of the new CG-C or C-0O bonds formed in the transition

) state cannot be ruled out, it is not necessary to invoke Cieplak’s
photolysis concept to explain the results of the intermolecular reactions. It

: is not clear, however, whether the Cieplak approach is applicable
5 mM in MeOH 89 74 26 . - . b
5 mM in MeOH (0.5 M fumaronitrile) 57 85 15 alsoI fc])cr thedlnct::ang)le((:ju_lar cas%. If Qy{)herconjugatlor; \INIth tne
5 mM in MeOH (1.0 M fumaronitrile) 58 83 17 new_y orme o_n |s_con3|, ered, the experimental results
are in agreement with Cieplak’s model. On the other hand,
2 Combined yield of insertion products, determined by GError: consideration of the €C bond formed contradicts the experi-

+2%, determined by GC and NMR spectroscop¥-Hydroxyada- mental findings.

mantane3 and4 are formed in small amounts. The calculations show the singlet ground state of cart2eoe

anti syn be most stabilized w_helj bent 7 dway fror_n the GH substituent.

.. LA According to the principle of least motich the intramolecular

C—H insertion should preferentially occur into the-8& bonds
proximal to the reactive center. This agrees well with the
experimental findings; the major produstems from an insertion
into the G—H or C,o—H bond. The predominant intermolecular
O—H and C-H insertion products and7 result from an approach
of the reagent via the more exposgghface of adamantylidene
OH 2. The bulkier part of the reacting molecule can be better
Figure 1. Possible sides for the attack @n accommodated there. Both, the intra- and intermolecular selectiv-
ity can, therefore, best be explained by the distortion of the
geometry of carben2 EFOE analysis 02 shows, that the plane-
divided accessible space (PDAS) of 266.5 afithe synside is
much larger than the PDAS of 196.23af the anti-side of the
molecule?” These results emphasize that the observed diastereo-
selectivity is caused by changes of the diastereofacial accessibility
already present in the ground state. Therefore, in the adamantyl-
idene system, the outcome of a reaction is much more governed
by steric factors than expected so favlore calculations and
. p2d experiments including electron-donating substituents, are in
’ progress to fully address these questions.
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